首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6972篇
  免费   390篇
  国内免费   37篇
测绘学   177篇
大气科学   729篇
地球物理   1788篇
地质学   2803篇
海洋学   374篇
天文学   1186篇
综合类   28篇
自然地理   314篇
  2023年   32篇
  2022年   47篇
  2021年   122篇
  2020年   145篇
  2019年   111篇
  2018年   318篇
  2017年   323篇
  2016年   424篇
  2015年   310篇
  2014年   367篇
  2013年   527篇
  2012年   414篇
  2011年   401篇
  2010年   369篇
  2009年   406篇
  2008年   280篇
  2007年   222篇
  2006年   213篇
  2005年   170篇
  2004年   185篇
  2003年   140篇
  2002年   132篇
  2001年   125篇
  2000年   104篇
  1999年   79篇
  1998年   91篇
  1997年   114篇
  1996年   68篇
  1995年   84篇
  1994年   78篇
  1993年   52篇
  1992年   32篇
  1991年   45篇
  1990年   68篇
  1989年   32篇
  1988年   26篇
  1987年   53篇
  1986年   33篇
  1985年   40篇
  1984年   41篇
  1983年   39篇
  1982年   41篇
  1981年   45篇
  1980年   26篇
  1979年   32篇
  1978年   26篇
  1977年   29篇
  1975年   21篇
  1974年   22篇
  1973年   24篇
排序方式: 共有7399条查询结果,搜索用时 16 毫秒
991.
Integration of extensive fieldwork, remote sensing mapping and 3D models from high-quality drone photographs relates tectonics and sedimentation to define the Jurassic–early Albian diapiric evolution of the N–S Miravete anticline, the NW-SE Castel de Cabra anticline and the NW-SE Cañada Vellida ridge in the Maestrat Basin (Iberian Ranges, Spain). The pre shortening diapiric structures are defined by well-exposed and unambiguous halokinetic geometries such as hooks and flaps, salt walls and collapse normal faults. These were developed on Triassic salt-bearing deposits, previously misinterpreted because they were hidden and overprinted by the Alpine shortening. The Miravete anticline grew during the Jurassic and Early Cretaceous and was rejuvenated during Cenozoic shortening. Its evolution is separated into four halokinetic stages, including the latest Alpine compression. Regionally, the well-exposed Castel de Cabra salt anticline and Cañada Vellida salt wall confirm the widespread Jurassic and Early Cretaceous diapiric evolution of the Maestrat Basin. The NE flank of the Cañada Vellida salt wall is characterized by hook patterns and by a 500-m-long thin Upper Jurassic carbonates defining an upturned flap, inferred as the roof of the salt wall before NE-directed salt extrusion. A regional E-W cross section through the Ababuj, Miravete and Cañada-Benatanduz anticlines shows typical geometries of salt-related rift basins, partly decoupled from basement faults. These structures could form a broader diapiric region still to be investigated. In this section, the Camarillas and Fortanete minibasins displayed well-developed bowl geometries at the onset of shortening. The most active period of diapiric growth in the Maestrat Basin occurred during the Early Cretaceous, which is also recorded in the Eastern Betics, Asturias and Basque-Cantabrian basins. This period coincides with the peak of eastward drift of the Iberian microplate, with speeds of 20 mm/year. The transtensional regime is interpreted to have played a role in diapiric development.  相似文献   
992.
The ability of discrete element models to describe quantitatively (and not only qualitatively) the constitutive behaviour of a dense sand is assessed in this paper. Two kinds of 3D discrete models are considered. Both consider spheres as elementary particles. Nevertheless, the first model implements a contact law with rolling resistance whereas the second takes into account clumps made of two spheres. The discrete models are calibrated and validated from mechanical tests performed on a dense Hostun sand with a true triaxial apparatus. The calibration is carried out from axisymmetric drained compression tests, while the validation is discussed from monotonic and cyclic stress proportional loading paths and from a circular stress path in the deviatoric stress plane. The quality of the predictions of the discrete models are evaluated by comparison with the predictions given with advanced phenomenological constitutive relations, mainly an incrementally non-linear relation. Predictions given by the discrete models are remarkable, particularly when it is put in perspective with respect to the very few number of mechanical tests required for their calibration. However, these results and conclusions were reached in enabling conditions, and some limitations of such discrete models should be kept in mind.  相似文献   
993.
994.
The thermal evolution of sedimentary basins is usually constrained by maturity data, which is interpreted from Rock-Eval pyrolysis and vitrinite reflectance analytical results on field or boreholes samples. However, some thermal evolution models may be inaccurate due to the use of elevated maturities measured in samples collected within an undetected metamorphic contact aureole surrounding a magmatic intrusion. In this context, we investigate the maturity and magnetic mineralogy of 16 claystone samples from Disko-Svartenhuk Basin, part of the SE Baffin Bay volcanic margin. Samples were collected within thermal contact metamorphic aureoles near magma intrusions, as well as equivalent reference samples not affected by intrusions. Rock-Eval pyrolysis (Tmax), and vitrinite reflectance (Ro) analysis were performed to assess the thermal maturity, which lies in the oil window when 435°C ≤ Tmax ≤ 470°C and 0.6%–0.7% ≤ Ro ≤ 1.3%. In addition, we performed low- (<300K) and high-temperature (>300K) investigations of isothermal remanent magnetization to assess the magnetic mineralogy of the selected samples. The maturity results (0.37% ≤ Ro ≤ 2%, 22°C ≤ Tmax ≤ 604°C) show a predominance of immature to early mature Type III organic matter, but do not reliably identify the contact aureole when compared to the reference samples. The magnetic assemblage of the immature samples consists of iron sulphide (greigite), goethite and oxidized or non-stoichiometric magnetite. The magnetic assemblage of the early mature to mature samples consists of stoichiometric magnetite and fine-grained pyrrhotite (<1 μm). These results document the disappearance of the iron sulphide (greigite) and increase in content of magnetite during normal burial. On the other hand, magnetite is interpreted to be the dominant magnetic mineral inside the contact aureole surrounding dyke/sill intrusions where palaeotemperatures indicate mature to over-mature state. Interestingly, the iron sulphide (greigite) is still detected in the contact aureole where palaeotemperatures exceeded 130°C. Therefore, the magnetic mineralogy is a sensitive method that can characterize normal burial history, as well as identify hidden metamorphic contact aureoles where the iron sulphide greigite is present at temperatures beyond its stability field.  相似文献   
995.
996.
The isotopic composition of evaporites can shed light on their environment of precipitation and their subsequent recycling processes. In this study, we performed Sr, O and S isotopic analyses on evaporitic sulphates in the halokinetic Sivas Basin. The main objectives were to decipher the age and origin of the evaporites responsible for the salt tectonics, and to test whether diapir dissolution acts as the source of younger evaporitic layers in continental mini‐basins. The Sr isotopes demonstrate that the first evaporites precipitated from seawater during the Middle–Late Eocene. The similar isotopic values measured in the halokinetic domain confirm that the Eocene evaporites triggered the salt tectonics and were continuously recycled in Oligo‐Miocene mini‐basins as lacustrine to sabkha evaporites. Modern halite precipitates suggest that the dissolution and recycling of diapiric halite is ongoing. This study demonstrates the efficiency of isotopic analyses in constraining evaporite recycling processes in continental halokinetic domains.  相似文献   
997.
The South Tien Shan (STS) belt results from the last collision event in the western Central Asian Orogenic Belt (CAOB). Understanding its formation is of prime importance in the general framework of the CAOB. The Atbashi Range preserves high‐P (HP) rocks along the STS suture, but still, its global metamorphic evolution remains poorly constrained. Several HP units have been identified: (a) a HP tectonic mélange including boudins of mafic eclogites in a sedimentary matrix, (b) a large (>100 km long) high‐P metasedimentary unit (HPMU) and (c) a lower blueschist facies accretionary prism. Raman Spectroscopy on carbonaceous material combined with phengite and chlorite multiequilibria and isochemical phase diagram modelling indicates that the HPMU recorded homogeneous P–T conditions of 23–25 kbar and 560–570°C along the whole unit. 40Ar/39Ar dating on phengite from the HPMU ranges between 328 and 319 Ma at regional scale. These ages are interpreted as (re‐) crystallization ages of phengite during Tmax conditions at a pressure range of 20–25 kbar. Thermobarometry on samples from the HP tectonic mélange provides similar metamorphic peak conditions. Thermobarometry on the blueschist to lower greenschist facies accretionary prism indicates that it underwent P–T conditions of 5–6 kbar and 290–340°C, highlighting a 17–20 kbar pressure gap between the HPMU‐tectonic mélange units and the accretionary prism. Comparison with available geochronological data suggests a very short time span between the prograde path (340 Ma), HP metamorphic peak (330 Ma), the Tmax (328–319 Ma) and the final exhumation of the HPMU (303–295 Ma). Extrusion of the HPMU, accommodated by a basal thrust and an upper detachment, was driven by buoyant forces from 70–75 km up to 60 km depth, which directly followed continental subduction and detachment of the HPMU. At crustal depths, extrusion was controlled by collisional tectonics up to shallow levels. Lithological homogeneity of the HPMU and its continental‐derived character from the North Tien Shan suggest this unit corresponds to the hyper‐extended continental margin of the Kazakh continent, subducted southward below the north continental active margin of the Tarim craton. Integration of the available geological data allows us to propose a general geodynamic scenario for Tien Shan during the Carboniferous with a combination of (a) N‐dipping subduction below the Kazakh margin of Middle Tien Shan until 390–340 Ma and (b) S‐dipping subduction of remaining Turkestan marginal basins between 340 and 320 Ma.  相似文献   
998.
Massive planets form within the lifetime of protoplanetary disks, and therefore, they are subject to orbital migration due to planet–disk interactions. When the first planet reaches the inner edge of the disk, its migration stops and consequently the second planet ends up locked in resonance with the first one. We detail how the resonant trapping works comparing semi-analytical formulae and numerical simulations. We restrict to the case of two equal-mass coplanar planets trapped in first-order resonances, but the method can be easily generalized. We first describe the family of resonant stable equilibrium points (zero-amplitude libration orbits) using series expansions up to different orders in eccentricity as well as a non-expanded Hamiltonian. Then we show that during convergent migration the planets evolve along these families of equilibrium points. Eccentricity damping from the disk leads to a final equilibrium configuration that we predict precisely analytically. The fact that observed multi-exoplanetary systems are rarely seen in resonances suggests that in most cases the resonant configurations achieved by migration become unstable after the removal of the protoplanetary disk. Here we probe the stability of the resonances as a function of planetary mass. For this purpose, we fictitiously increase the masses of resonant planets, adiabatically maintaining the low-amplitude libration regime until instability occurs. We discuss two hypotheses for the instability, that of a low-order secondary resonance of the libration frequency with a fast synodic frequency of the system, and that of minimal approach distance between planets. We show that secondary resonances do not seem to impact resonant systems at low amplitude of libration. Resonant systems are more stable than non-resonant ones for a given minimal distance at close encounters, but we show that the latter nevertheless play the decisive role in the destabilization of resonant pairs. We show evidence that as the planetary mass increases and the minimal distance between planets gets smaller in terms of mutual Hill radius, the region of stability around the resonance center shrinks, until the equilibrium point itself becomes unstable.  相似文献   
999.
Solar Physics - We study a quiet-Sun blowout jet which was observed on 2014 May 16 by the instruments on board the Solar Dynamics Observatory (SDO). We find the twin CME as jet-like and bubble-like...  相似文献   
1000.
This paper presents a thermo‐hydro‐mechanical framework to model the drying behavior of Boom clay. First, the experimental campaign conducted Noémie Prime is briefly presented because it is used to validate the model. The data acquisition and processing is emphasized because of the use of X‐ray microtomography to be able to more accurately compare experimental and numerical strain fields. The different submodels are introduced. Numerical simulations are performed to illustrate the capability of the proposed model to reproduce the observed behavior. Finally, a comprehensive sensitivity study on several key model parameters associated with the water retention curve, and the permeability of the medium, is performed to get a better understanding of the physics behind the coupled model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号